
"NTATION PAGE i Form Appro•cd

1iUI IIeem OMB No C7)4C,

Oflce 0' a nae"n - ,a gde* Delc', C ~ PC - -- 7!C "

ORT DATE 131 REPORT TYPE AND DATES COVEREDI FINAL/01 APR 90 TO 30 SEP 92

4. TITLE. AND SUBTITLE [5. FUNDING NUMBERS

MONOTONE APPROXIMATE QUERY PROCESSING (U)

6. AUTHOR(S) I
2304/A7

Profess:or Jane Liu AFOSR-90-0193

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9. PERFORMING ORGANIZATION

University of Illinois REPORT NUMBER

Dept of Computer Science
Urbana IL 61801-2987

AFOSR*TE - 93 094 78
9. SPONSORING/ MONITORING AGENCY NAME(S) AND A 9r11)1 10. SPONSORING, MONITORING

1%OSR/N AGENCY REPORT NUMBER

110 DUNCAN AVE, SUTE B115 W FOR-0-19BOLLING AFB DC 20332-0001 S•L AOR9009

11. SUPPLEMENTARY NOTES1 .,

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED I

113. ABSTRACT (Maximum 200 words)

*This project was concerned with means to provide approximate answers to queries.
The researchers developed a monotone query processing scheme. This scheme allows a

data base system to provide for each a series of intermediate answers that are
approximations of the exact answer. The approximate answers improve monotonically

in accuracy as more data are retrieved and processed to answer the query. If for
any reason query processing must be terminated prematurely before the exact answer
is produced, the latest intermediate answer, that is, the best approximate answer

produced so far, is made available to the application. For many time-critical
applications, a timely approximate answer that is sufficiently good is better than
no answer at all or the late exact answer,

/ ,/(-c-,l

93-16875
14. SUBJECT TERMS TI4I ll i, I I 11 II It -,

15. NUMBE OF PAGES

16 PRICE CODE

17. .RIC&MFtL&X31J1CAT'YN SECIMNNIXSIMMION '9. SEcUW0AECTsAWlYioN 2O~%~ff 05 AWWA1
"OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

FINAL REPORT ON

MONOTONE APPROXIMATE QUERY PROCESSING

Contract No.: AFOSR-90-0193

Contract Period: April 1, 1990- September 30, 1992

Accesion For

NTIS CRA&I

DTIC TAB
Unannounced 0
Justification.

By
Distribution I

Availability Codes

Avail and I or
Dist Special

Principal Investigator

J. W. S. Liu 217 333-0135 janeliu@cs.uiuc.edu

Institution:

Department of Computer Science, University of Illinois

I INTRODUCTION

This report summaries the work done under the contract No. AFOSR-90-0193. The contract period
is from April 1, 1990 to September 30, 1992.

This project'is concerned with means to provide approximate answers to queries. We have
developed a monotone query processing scheme. (Publications on this scheme and its theoretical
foundation are listed in Section 4.) This scheme allows a database system to provide for each query a
series of intermediate answers that are approximations of the exact answer. The approximate answers
improve monotonically in accuracy as more data am retrieved and processed to answer the query. If for
any reason query processing must be terminated prematurely before the exact answer is produced, the
latest intermediate answer, that is, the best approximate answer produced so far, is made available to the
application. For many time-critical applications, a timely approximate answer that is sufficiently good is
better than no answer at all or the late exact answer.

The underlying principle of the monotone query processing scheme is the approximate relational
model. This model was initially developed as a rigorous framework for producing approximate answers
to set-valued queries. A set-valued query has as its exact answer a set of objects with properties given by
the query qualifications; in the relational model, such an answer is a relation. A meaningful and useful
set of approximate answers can be defined in terms of all the subsets and supersets of the exact answer.
The approximate relational model formally captures this semantics of approximation. In particular, this
model defines the approximations of any standard relation in terms of supersets and subsets of the
relation, a partial-order relation over the set of all approximate relations for comparing them, and a
complete set of new relational algebra operations on approximate operands. Every one of these relational
algebra operations is monotone in the sense that the result of the operation is better when its operand(s)
becomes better. This model has since been extended to give meaningful approximation semantics for
many frequently encountered types of single-valued queries.

We have implemented a prototype query processor, called APPROXIMATE, to demonstrate the
feasibility of monotone approximate query processing. APPROXIMATE accepts standard relational
algebra queries. It assumes that the data is stored as relations and the user's view remains that of the
relational model. It can be implemented on a relational database system requiring little or no change to
the underlying relational architecture. The query processor itself takes an object-oriented approach. Its
views of the stored data are object-oriented. Such views provide it with the needed semantic support that
is lacking in the relational model and enable it to keep the additional overhead in producing approximate
answers small.

Following this introduction, Section 2 discusses the need to make query processing in real-time,
dependable databases incremental and monotone. Section 3 summarizes the technical accomplishments
of this project. Section 4 lists the publications on work supported by contract No. AFOSR-90-0193.

2. MOTIVATION AND OBJECTIE

The objectives of this research is to develop the basic concept of incremental, monotone query
processing in real-time, dependable database systems and to implement a prototype query processor to
demonstrate this concept. In many (hard) real-time applications, such as machine vision, multiple robots,

AFOSR-90-0193

and air traffic control, processes must share data stored and maintained by a database system. The work
on incremental, monotone query processing was motivated by the need for database systems suited for
these applications. It is often difficult to meet two requirements of real-time, highly-dependable database
systems: satisfying timing constraints of time-critical query and update operations and providing fault
tolerance and graceful degradation in the presence of host and network faults.

The imprecise computation technique has been proposed in 1987 as a way to make meeting these
requirements easier. (Selected publications on this technique are [1-7].) Since its advent, the results in
imprecise-task scheduling have clearly demonstrated the feasibility and effectiveness of this technique.
We call a system based on this technique an iiprecise system. In an imprecise system, each critical task
is structured so that it is monotone. The intermediate results of increasing accuracy produced by each
task as it executes are stored. If the task completes, the result produced by the task is the exact, desired
one. If execution is not completed for any reason, then the latest intermediate result stored before the task
terminates, that is, an approximate result, is made available. The portion of each task that must be
completed for the approximate result produced by it to be sufficiently good and, hence, usable is
considered to be mandatory. The portion of the task that refines the usable approximate result to further
reduce the error in the result is considered to be optional. The imprecise computation technique eases the
difficulty in meeting all deadlines at all times significantly for the following reason. To ensure that all
deadlines are met, we only need to ensure that the mandatory portion of all critical tasks are completed by
their deadlines. We can use the system resources left over after all mandatory subtasks are completed to
complete the optional portions of as many tasks as possible. Only mandatory portions are restricted to
have bounded execution time and resource requirements. It is not necessary to eliminate non-
determinism in the timing and resource requirements of optional portions. This technique can also be
used in a natural way to enhance the dependability of computing systems. A fault may cause a task to
terminate prematurely. If the task has already produced a usable imprecise result when it terminates, no
error-recovery action needs to be taken. If the imprecise result is not usable, the result, together with the
recorded values of the accuracy indicator variables, gives a snapshot of the state of the computation at the
time of its termination. This snapshot can serve as a checkpoint from where the computation can
continue after the fault is cleared.

The imprecise computation technique relies on the use of well-behaved computational algorithms
that produce acceptable, intermediate results in predictable, short amounts of time and better results when
allowed more time. Until recently, such algorithms did not exist in the database domain. Traditionally,
database query and update operations are atomic. An answer to a query is returned only after all the data
required to answer the query are retrieved and processed. If a failure causes some of these data to become
unavailable, no answer is retraned. Atomicity of query processing operation is desirable for traditional
database applications since one needs and, hence, is willing wait for exact answers. In contrast, a late
time-critical mawer from a real-time database may be less accurate than a sufficiently good and timely
appoximate answer. Time-critical data stored in a database deteriorates with time as the real-world it
models changes. To support imprecise computations in the database domain, query computations must
be restructured to allow for their partial, approximate completion.

Making query processing incremental and monotone is alsu a way up wake database systems more
fault tolerant. A host or network fault may make some of the data required to answer queries inaccessible

AFOSR-90-0193 2

and cause query computations to terminate prematurely. By making an approximate answer available
whenever an exact answer cannot be obtained, we can increase the availability data.

3. TECHNICAL ACCOMPLISHMENTS

We have built a prototype query processor, called APPROXIMATE. This query processor makes
approximate answers to database queries available if part of the database is unavailable or if there is not
enough time to produce an exact answer. In particular, the processor implements monotone query
processing; the approximate answer returned by the processor improves as more data is retrieved to
answer the query. As shown in Figure 1, APPROXIMATE accepts standard relational algebra queries.
The data is stored as relations and the user's view remains that of the relational model. An object-
oriented approach is taken to implement the query processor. The semantic information provided by the
object-oriented view maintained by APPROXIMATE enables it to produce good initial approximations
and to reduce the overhead in query processing. This processor can be implemented on a relational
database system, requiring little or no change to the underlying relational architecture. This section
describes its underlying data model, approximation semantics, query processing primitives and semantic
support, monotone query processing algorithm and its implementation.

3.1. Approximation Semantics

Database queries can be divided into two types: set-valued and single-valued queries. The
qualifications of a set-valued query define a property (or properties) of objects, and the expected answer is
the set of objects with this property. A single-valued query expresses some properties of the object(s) of
interest as a whole, and the expected answer may assume any of a countable set of values. We have
developed meaningful approximation semantics of answers to these two types of queries.

relational algebra apniate
queriesreut

APPROXIMATE

rmetrievedmaeyedreadt
data requests

base
relations

Figure 1. APPROXIMATE: A Monotone Query Processor

AFOSR-90-0193 3

3.1.1 Approximate Relational Model

An exact answer E to any set-valued query is a set of data objects. In the traditional relational
model, it is a (standard) relation. Meaningful approximate answers of such a query can be define in terms
of subsets and superets of the exact answer. This approximation semantics was suggested by Buneman,
Davidson and Watters in [8] and is the basis of our approximate relational model. The approximate
relational model defines for every standard relation, a set of approximate relations, a partial order relation
over this set for comparing the approximate relations, and a complete set of approximate relational
algebra operations for processing the approximate relations.

Specifically, a meaningful approximation of a set-valued exact answer E can be defined in terms of
a subset and a superset of E. An approximate relation A of an exta answer E is composed of two sets of
tuples: a certan set C, which is a subset of E, and a possible set P, where A = C Q P is a superset of E.
This approximate relation is denoted by the 2-tuple (C, P). We refer to tuples in the certain set and
possible set as certain tuples and possible tuples, respectively. (We sometimes also refer to tuples stored
in the database as database objects.)

Any exact answer E has many approximate relations. Given a set of approximate relations of E, we
defined a partial order relation > over the set for comparing them as follows. One approximate relation is
Ai = (Ci, Pi) is equal to or better than another Aj =(C,,Pj), denoted asAi kAJ, ifAd gAj and Ci ; CJ.
In other words, Ai is better than Ai because of the fact that the tuples in Ci - Cj are in E becomes certain
and/or the fact that the tuples in Aj -Ai am not in E becomes certain. This partially ordered set of all
approximate relations of E is a lattice. In the lattice, A 0 = (0, u) is the least element and the worst
possible approximation of E. where 0 denotes the null set and u is the cartesian product of all the
domains in the schema of E, the set of all possible tuples which could be in E. A key assumption made
in APPROXIMATE is that the number of elements in v is finite and, at least theoretically, can be
computed without accessing any data. The greatest element of the lattice is the best possible
approximation of E and is E itself, which is represented by (E, 0).

The example shown in Figure 2 illustrates that the semantics of approximation defined above
matches our common sense notion. Suppose that an AIRPORTS database that resides on-board an
airplane. AIRPORTS contains the relation RUNWAYS (id, airport, length, obstructions). A pilot
queries the database to locate all the runways with an easterly direction, with ids from 5 to 13, at airports
O'Hare (ORD) and Midway (MDW) in Chicago. The exact answer to this query is the relation E shown
in Figure 2(a). Figures 2(b)-{f) show five other relations. The relation R I shown in Figure 2(b) contains
tuples on all runways at ORD and MDW. It gives all the tuples that are possibly in E and hence, is an
approximation of E. The relation R2 shown in Figure 2(c) contains tuples on all easterly runways at
ORD airport. It is a subset of E, containing tuples that are certainly in S. By the definition above, R2 is
not an approximation of the E. R 3 shown in Figure 2(d) is another approximation of E. The first two
tuples are certainly in E. They form a subset of E. The last four tuples are possibly in E. R3 is a
superset of E. It is a subset of R I and is a better approximation of E than R 1 . The relation R 4 in Figure
2(e), another superset of E, is the set of tuples on easterly runways in Illinois. It is a different superset of
E than R and is not comparable to R1. The approximate relation R 5 in Figure 2(0 is a subset of R4 and
a superset of E. R 5 is better than R 4, but is not comparable to R I and R 3.

AFOSR-90-0193 4

id Airport Length id Airport Length
6 MDW 7500 6 MDW 7500
7 MDW 8000 7 MDW 8000
9 ORD 11000 9 ORD 11000
10 ORD 8000 10 ORD 8000
13 ORD 10000 13 ORD 10000

27 ORD 9500

(a). E: All easterly runways
at ORD and MDW (d). R 3: An approximation of E

id Airport Length id Airport Length
I MDW 6000 5 CIEi I0000
6 MDW 7500 6 MDW 7500
7 MDW 8000 7 MDW 8000
9 ORD 11000 8 PIA 8500
10 ORD 8000 9 ORD 11000
13 ORD 10000 10 ORD 8000
27 ORD 9500 13 ORD 10000

13 SPI 11500

(b). R 1: All runways at ORD
and MDW (e). R 4: All easterly runways

at Illinois airports

id Airport Length id Airport Length

9 ORD 11000 6 MDW 7500
10 ORD 8000 7 MDW 8000
13 ORD 10o00 10 ORD 8000

5 Cii 10000
9 0RD 11000

(c). R2: Easterly runways 13 ORD 10000

atO1D 13 SPI 11500

(f). RS: An approximation of E

Figure 2. An Example: Approximate Relations

3.1.2 Approximations of Single-Valued Answers

The semantics of approximation defined by the approximate relational model can also serve as a
basis for meaningful semantics of approximation of many types of single-valued queries. An exact
answer to a single-valued query can be a single object retrieved from the database, the value of an
aggregate function (such as "count"), or a value (such as "yes" or "no"), derived from a set-valued or
single-valued answer. Examples of single-valued queries include:

(1) "In what city is airport MDW?"

AFOSR-90-0193 5

(2) "What is the maximum length of the runways at O'Hare?"
(3) "How many pints of type 0- blood are available?"
(4) "Is the number of runways at O'Hare greater than 10?"
(5) "What is the color of car No. 20?"

Query (1) exemplifies a special case of set-valued queries whose exact answer is a set of cardinality
1. The exact answer E is "Chicago". Since any proper subset of E is the null set 0, an approximate
answer of E is, therefore, simply (0, P 1) where the possible set P I is a superset containing the exact
answer. A possible value ofP 1 is (Chicago, Peoria, Champaign), a set of three cities near Chicago. This
answer improves as elements "Peoria" and/or "Champaign" are deleted from P 1. We can consider query
(2) to be another set-valued query whose exact answer contains one elemen. The exact answer of 10,000
ft is an element of a set P 2 of possible values, such as the set P 2 = (8000, 9000, 10000, 11000) of known
runway lengths. Therefore, approximate answers in this case are also of the form (0, P,) for all supersets
of (10000).

Equivalently, we can consider the exact answer of query (2) as the value of the aggregate function
"max" over the set L of lengths of all runways at O'Hare. A meaningful approximate answer in this case
is again a range of values that contains the exact answer. Upper and lower limits of such a range are the
values of the function "max" over a superset and a subset of the set L, respectively. Similarly, the exact
answer to query (3) is the value of an aggregate function over the set 0 of all objects on type 0- blood.
In this case, the aggregate function is "count" or "sum." Since the domain of the sum function is a set of
non-negative numbers in this case, as an approximation to the value of such an aggregate function, we
can provide the values of the aggregate function defined over the certain set C r 0 and the superset
C u P where (CP) is an approximation of O. Again, these values give us a range of values, such as
"at least 2", or"2 to 10".

Query (4) requires a yes/no answer. Such an answer is derived from the aggregate function "count"
over the set of data objects that satisfy the query qualifications. Specifically, the exact answer of query
(4) is the value of a binary function of the value of "count" over the set R of all runways at O'Hare. The

derived exact answer is "no" whenever the value of the count function is equal to or less than the
threshold value 10. Again, a meaningful approximation of the exact answer can be derived from an
approximation (C, P) of the set R. In particular, as long as the certain set in (C, P) contains 10 elements
or less, the derived approximate answer remains "no". In addition to this value, we can also provide, as
part of an approximate answer to such a query, a percentage value and the value of count over the current
certain set C. An example is "no - 60%, number of runways 2 3". The percentage value, called the
conf dencefactor, in the approximate answer gives the amount of data retrieved and processed thus far to
produce (C, P). The value of the count function over the certain set (3 in the above example) gives a
lower bound on the exact value of the count fimncton. As more data are trieved and processed, the
confidence factor increases monotonically, and the value of the count function over C becomes closer to
the exact value. In this sense, the approximate answer monotonlcally improves.

We note that in the cases of queries (1) - (4) there is a natural partial order between the elements of
the attribute domain over which approximate answers are defined or are derived from. In query (2), for
example, the exact answer and approximate answers are expressed in terms of positive integers; there is a

unique way to compare different runway lengths. In query (1), the exact answer is an element of the set

AFOSR-9O-0193 6

of geographical locations. It is natural to order the closeness of difftrent geographical locations to the
exact location by physical distances to it. Query (5) illustrates that the exact answer may be an element
or derived from elements of an attribute domain whose elements can be compared according to more than
one partial-order relation. Suppose that the exact answer E is the color "maroon". A superset of colors
containing "maroon" is an approximate answer. The elements of the color domain can be compared

according to different criteria based on different characteristics of the color attribute. For example, we
carn identify a superset of colors close to maroon based on the color spectrum, or a superset of colors close
to maroon based on color intensity. Hence, a superset of E can be the set of all reddish colors, such as
Ired, pink, maroon), or a superset of all dark colors, such as (navy, maroon, black). APPROXIMATE
defines and supports by default some alternative partial-order relations to demonstrate the feasibility of
providing different approximate answers, but does not provide the needed user interface through which a
user can define other partial-order relations, and hence new semantics and comparison criteria, on a per
query basis.

32. Distance Functions

Thus far, we have discussed how subsets of a domain are compared solely on the basis of their
cardinalities. In query (I), for example, the approximate answers (0, (Champaign, Chicago, Paris IL))
and (0, (Champaign, Chicago, Paris France)) are either not comparable or are equally good initial
approximations of ((Chicago),0). We can make the approximation semantics more meaningful by
comparing subsets not only on the basis of their cardinalities, but also on the basis of some metric that
measures the distances of their elements to the exact answer. In particular, we use a metric of accuracy,
called a distance function, to quantify how much better one approximate answer is than another. A
distance function induces a partial-order relation to be defined over the set of all approximate answers of
an exact answer E. This partial-order relation is a lattice in which the unique best element is the exact
answer itself. The query processor uses this measure of accuracy to identify a good initial approximation

of the exact answer when query processing starts. It then chooses data to retrieve and process so that it
produces a series of approximate answers of improving accuracy according to the relation. This series
converges to the exact answer when query processing terminates normally.

3.2.1. Distance Between Elements and Vector Distances

Using an approach similar to VAGUE [9], we define one or more distance functions for comparing
elements of an attribute domain. There can be more than one distance function for a domain. The
distance between two values of an attribute, that is, two elements of the domain of the attribute, is defined
as follows. Given an attribute domain D, a distance function for D is a mapping 8 from the cartesian
product D x D to the set of non-negative reals that is

reflexive: 8(vi, vi)- O, for every value vi in D,
symmetric: 8(vi, vj) = 8(vj, vi), for all values vi and vj in D, and
transitive: 8(vi, vj) + 8(vj, vk) 5 8(vi, vk), for all values vi, vj and vk in D.

If one value vi cannot be used to approximate another value vj, then the values are not comparable, and
we denote this by vi - vj. For any two pairs of values, (vi, vt) and (vj, vt), the value vi is said to be

closer to vt than vj, or v, is better than vj, if 8(vj, vk) < 8(vj, vk). Figure 3 illustrates an example of the
distances between several values of the attribute color. According to the distances based on color

AFOSR.90-0193 7

spectrum. we say that maroon is closer to red than green, since 8 (red, maroon) = I < 8 (green,
maroon) = 4.

The qualifications of a query can involve many attribute values. To provide a measure of quality in
this case, we define the distance between pairs of values of two attributes as follows. Given m attributes
and their domains D 1, D2 ... D,, a vector value over D=(DxD 2 x ... xD,,) is denoted by
vi = (vi ,Ivi2 " * • vi) where vi Ie D1, vi2e D 2 * • • vi e D,.. An m-dimensional distance function is the
mapping from D x D to the set of mr-tuples of non-negative reals that is reflexive, symmetric and
transitive.

Elements of a set V of m-dimensional vector values can be used to approximate a particular vector v
in this set. By giving a vector distance function 8 different semantics, we can define either a linear-order
or a partial-order relation over the set of vector values. For example, given two 2-dimensional vectors vi
and vj with 8(vjv)=(d1 ,d 2) and 8(vjv)=(d1 ',d 2'), we can choose to compare vj and vi as
approximations of v according to the distances between the values of the individual attributes in a
lexicographical order. This interpretation of the 2-dimensional distance function gives us a linear-order
relation over the set V. Alternatively, a linear-order relation can be defined by assigning a weight wi to
each dimension in the vectors. The weighted distances of the individual dimensions are added to produce
a single distance value. We can say that vj is better (vi 2vj) if (wId 1'+w 2d 2'):(wId, +w2d 2),
otherwise vi > vj. We can also define a partial-order relation over V as follows: for any two 2-
dimensional vectors vi and vj whose distances to v are 8(vi, v) = (d , d 2) and 8(vj, v) = (d1', d2l), vj > vi
if d 1'5 dI and d2' I d 2, that is d': d; otherwise the values am not comparable, denoted as vi - vj. This
defines a partial order relation that is reflexive, symmetric, and transitive. Linear-order and partial-order

relations over m-dimensional values can be defined i. an analogous way as for 2-dimensional values.

Query (5) mentioned earlier illustrates the fact that we sometimes may want to define a vector
distance function over a single attribute domain. An mrimensional distance function is a mapping 5
from the set D x D to the set of m-tuples of non-negative reals that is reflexive, symmetric and transitive.
For example, we can define a 2-dimensional distance function on the domain of colors. This distance
function allows us to compare colors according to two characteristics: color spectrum and color intensity.

color color Distance color color Distance
red maroon I red maroon 2
red orange 1 red orange 2
red green 3 red green 1
maroon orange 2 maroon orange I
maroon green 4 maroon green 2
orange green 2 orange green 2

(a). Distances based on color spectrum (b). Distances based on color intensity

Figure 3. An example of distance functions

AFOSR-90-0193 3

In Figure 3 the 2-dimensional vector distance between the color red and the color green is 8 (red, green) =
(3,1). The distance between red and green based on characteristic of color spectrum is 3, and 'he distance
between red and green based on the characteristic of color intensity is 1. Depending on the interpretation
of the 2-dimensional distance function, a linear or partial-order relation over the domain of colors can be
defined.

3.2.2. Distances between Subsets

Let V = (VI, v2 "" v,,) be a nonempty subset of D. We can define the distance 8(v, V) between a
value v in V and the subset V as the average or maximum of the distances between the values in V and
the value v. A value vi in D is not comparable to a subset V of D, denoted by vi - V, if vi is not in V.
Such a function 8 defines a linear-order relation over V. vi is closer to V than Vj if 5(vi, V) < 6(v, V).
For example, according to the distance function defined as the averages of the distances in Figure 3, the

color red is closer to the given subset (maroon, green, orange, red) than the color green because 8(red,
(maroon, green, orange, red)) = 1.25 and 8(green, (maroon, 'reM orange, red)) = 2.25. We also define
the distances between a value and a set of values of in different attributes as foll 'ws. Given a vector of
values v-(v I, v 2, -" v.) and an m-dimensional vector V = (VI, V2, -'" V,.) of sets where V D I -
V2 Q D2 - and V. c D., the value of the distance function 8(v, V) is the vector d = (d , d2, d,),
where d, 8 (v 1, V I), d2 =f W(v2, V2), "'" , df = 8(v,,, "".).

The distance 8(v, V) between a value v and a subset V containing v also allows us to measure the
goodness of V as an approximaton of v. To ensure that the approximate answers obtained at different
stages of query processing are consistent, two subsets Vi and Vj of D are comparable only if either
Vi Q Vi or Vj Q Vi. By consitency here, we mean that a better approximate answer obtained later as
more data is retrieved and processed never contradicts a poorer approximate answer obtained earlier.
Given two comparable subsets Vi and Vp, we say that Vi is a better approximation of Vj than v if
8(v, Vi) < 8(v, Vj). In the example in Figure 3, the subsets (maroon, orange, red) and (maroon, g-en
red) are not comparable. The query processor never produces one of these answers earlier and the other
one later. On the other hand, (maroon, green, red) is a better approximation of red than (green, red)
because 3(red, (maroon, green, red)) = 1.33 and 8(red, (green, red)) = 1.5. However, (maroon, red) is
better than (maroon, green. red).

The semantics of approximation given by the approximate relational model discussed earlier can be
defined in a similar manner in terms of the following distance function over all the subsets of an attribute
domain D (or the cartesian product of m attribute domains). According to this semantics of
approximation, two approximate answers Ai = (Ci, Pi) and A4 = (C,, Pj) of a set-valued answer E can be
compared only if either Ai Q A, and Ci Q C1 or Aj Q Ai and Cj : Ci. Specifically, comparable subsets
(or supersets) of the exact answer are compared solely on the basis of their cardinalities. The distance
between an approximate answer A = (C, P) to the exact answer E of a set-valued query is the 2-
dimensional vector.

8(A,E) -=(E -CI ,I C uP -El)= El -C(,I P-E)-(d , d2).

In this expression, d, is the distance between the certain part and the exact answer and is equal to the
number of objects that are in E but are not in the certain set C. The d 2 is the distance between the

approximate answer A - (C v P) and the exact answer and is equal to the number of objects in the

AFOSR-90-0193 9

possible set P that ar not in E. In tht example in Figure 2, the distance between R I in Figure 2(b) and
the exact snswer E in Figure 2(a) is S(R 1, E) = (5,2). The distance between R 3 in Figure 2(d) and E is
8(R 3, E) = (3,1). The partial-order relation defined is the same as the one defined by the approximate
relational model, but the distance between an approximate answer to an exact answer gives us more
information on the sizes of the subsets and supersets used to form the approximate answer.

3.3. Monotone Approximate Operations and Query Processing Algorithm

APPROXIMATE uses as primitives a set of approximate relational algebra operations, because
standard relational algebra operations cannot operation on approximate relations. These approximate
relational algebra operations are defined in Table 1. Each operation accepts an approximate relation(s) as
an operand and p-oduces an approximate relation as its result. Specifically, Table I defines approximate
union, set difference, select, project, and cartesian product. Join can be derived from select and cartesian
product, and intersection from set difference. In the definitions, x, u, n, and - in the CT and Pr
columns denote the set-theoretical operations cartesian product, union, intersection and set diffe:rtnce,
respectively. The approximate operations have the monotonidciry property. Here, we say that an operation
is monotone if the result of the operation is better when its operands are better.

To explain the monotone query processing algorithm implemented in APPROXIMATE, we first
note that any relational algebra query can be represented as a query tree. Each leaf node of this tree
represents a base relatdon to be read by the query processor from the database. Each non-leaf node
represents the result of a relational algebra operation. The root node represents the final result of the
query. Query answers are traditionally derived in the following all-or-nothing manner. Each leaf node is
evaluated by issuing a read request to the database for the base relation it represents. A node at the next
higher level can be evaluated ,ly when all operands represented by its children are available. The query
evaluation process ends when the root node is evaluated. The value given to the root node is the exact
answer to the query. In contrast, APPROXIMATE processes each query in a monotonic, incremental

Approximate Operation CT PT

Union: RT=RIuR2 CT-=CI1VC2 PT--(PI P2)-CT

Difference: RT = R I - R2 CT=CI-R2 PT = (P I - R2) U (P2 n R R)

Select: RT = aa.,wRI CT = 0g,0.w C 1 PT = Oa.a.W P I

Project. RT - x"RI CT = tUCI PT = AmPI

Cart. Prod: RT=RIXR 2 CT =-CI XC2 PT=(RIXR2)-CT

Table 1: Approximate relational operations

AFOSR-90-0193 t0

manner. Each node in the query tree represents an approximate relation. An additional primitive is the
approximate read request which we use instead of a standard read-request. Each approximate
readjrequest returns a segment of the requested base relation at a time. An approximate read-request can
be implemented easily whenever a stored relation is horizontally partitioned across a file system or a
relation is indexed. Otherwise, when relations are not partitioned or indexed, an approximate
read-request is the same as a standard read request.

In principle, the basic monotone query processing algorithm works as follows. It begins by
assigning an initial approximation to each node in the query tree. Such an initial value, theoretically, can
be the cartesian product of all domains in the schema of the relation meprsented by the node. As each
approximate read-request is carried out, each returned segment causes additional certain tuples to be
added to, and possible tuples to be deleted from, the current approximation of the base relation. The
value of the leaf node improves as more segments are returned. The improvement in the leaf nodes is
propagated upward to the root node by reevaluating the nodes in the query tree. The value of the root
node is updated with better values each time the root node is reevaluated. Thus APPROXIMATE is
capable of producing a chain of increasingly better approximate answers, each integrating the effect of
additional base relation data. None but the final, exact answer requires all base relation data be available
before it can be produced. If query processing terminates prematurely, some approximate answer in the
chain will be returned and the quality of the returned answer increases monotonically with time.

3.4. Implementation of Monotone Query Processing

To implement monotor..- query processing efficient, APPROXIMATE maintains semantic
information about the stored data so that initial approximations of different answers can be chosen and
generated. The rate at which the approximate answers converge to the exact answer can be made faster by
choosing better initial approximations. We must also implement the approximate relational algebra
operations efficiently. Every approximate relational algebra operation defined in Table I involves
operations on the possible tuples as well as the certain tuples in its operand(s). Substantial query
processing time is saved in APPROXIMATE by avoiding operations on the possible tuples as much as
possible. This section describes the object-oriented view maintained by APPROXIMATE to provide it
with the needed semantic support and the strategy used to defer and avoid operations on possible tuples.

3.4.1. Object-Oriented View

APPROXIMATE views a base relation, and sometimes a segment of the relation, as a class; ruples
in the relation, or the segment, are instances of the corresponding class. Specifically, in the
APPROXIMATE's view, data objects with common characteristics are organized into classes. Classes
are in turn organized into a collection of class hierarchies. The definition of each class provides a
semantic interpretation of the cormsponding segment of the relation, and each class hierarchy provides
relationships between classes. APPROXIMATE may use more than one class hierarchy to give different
views of the data objects in each relation. APPROXIMATE makes use of these relationships between
classes and the values of a default distance function when choosing initial approximations. It stores its
class hierarchies in memory for fast access. Information supplied b) a class hierarchy is accessed along
with the base relations during query processing.

AFOSR-90-0193 11

In addition to a semantic interpretation of the database objects, a hierarchy of classes also provides
access path information. A type of access path information is the granularity of stored data for retrieval at
a time. Some base relations are returned only in their entirety. An approximate read-request issued
against such a relation returns the entire relation. On the other hand, individual segments of other base
relations can be retrieved one at a time. This information is provided by every class hierarchy. In
particular, each class at the leaf level of a class hierarchy represents the smallest unit of stored data that
can be returned at one time by an approximate readjrequest. The segments represented by the leaf
subclasses of a class can be returned one at a time by multiple approximate readrequests to retrieve the
individual segments or by a single approximate read-request to retrieve all the segments together as one
unit.

Each class in a class hierarchy has a class variable D called a domain range. The domain range of a
class gives the ranges of values that the attributes of the instances of the class can have. A relation, or a
segment of it, on the domains D 1, D 2, - - iD is a subset of DI x D2 x .. -xD,,. In the class
corresponding to the relation (or a segment of the relation), the value of the domain range D is the m-
dimensional vector (VI. V2, -.- V,,) where, for i=1, 2,-. m, Vi is the subset of Di containing all
possible values of the i th attribute of the instances of the class When it is necessary to return an
approximate answer whose possible set contains the set of all instances of the class, the values of the
possible tuples can be computed from the values of this class variable.

3A.2. Approximate Classes and Objects

During query processing, APPROXIMATE generates a template of the possible tuples P for the
approximate relation at each node in the query tree. Rather than performing repeated relational algebra
operations on the actual possible tuples every time an update of the value of a leaf node is propagated up
the query tree, it modifies the templates. The template and the methods for modifying the template of
possible tuples for the approximate relations of each standard relation ar provided in an approximate
class. An approximate class provides a description of the set of all approximate relations of a standard
relation E. An approximate class has two instance variables: CertainPart and PossiblePart. The
dumain of the variable CertainPart is the class C, referred to as the certain class. The class C consists of
the attributes of the tuples in the certain set of an approximate relation of E. Instances of C are the
certain tuples in an approximate relation of E. The domain of the variable PossiblePart is a metaclass
whose instances are themselves classes. We denote this set of instances that are classes by P. We refer to
the classes in P as possible classes. The instances of a possible class are the possible tuples in an
approximate relation of E. An approximate class also has a class variable OP that has as its value a
relational algebra operator or approximate read request. We will return to discuss this variable.

An instance of an approximate class is an approximate object. Each value of the approximate
object corresponds to an approximate relation. A value Ri of an approximate object, corresponding to the
approximate relation R8 = (Ci, Pi), is described by the 2-tuple (Ci, P1); tuples in the certain set Ci are
instances of the certain class C, and Pi is a set of possible classes, the set of all instances of which is the
possible set Pi. As an example, Figure 4 shows the value R3 of an approximate object corresponding to
the relation Rs in Figure 2(f). The set Cs of certain tuples in R 5 - (Cs, Ps) are a subset of the instances
of the class "IL short E runways" of runways at O'Hare airport with no obstructions. The possible tuples

AFOSR-90-0193 12

id Airport Length

6 MDW 7500
7 MDW 8000
10 ORD 8WO0

{ IL-long-E-runways)

Figure 4. Rs: An approximate object

in P5 are instances of P5 - (IL-long-E-runways), the class of long, easterly runways in Illinois.

The approximate relational algebra operations in Table 1 are implemented in APPROXIMATE by
their corresponding extended approximate relational algebra operations that operate on the corresponding
approximate objects. These operations are the primitives in APPROXIMATE used for query processing.
The extended operations make use of the information contained in the possible classes. The relational
algebra operations are performed on the certain instances, as in traditional query processing. However,
rather than manipulating possible tuples, the operations are done on the possible classes. The extended
operations are monotone as are the corresponding approximate relational algebra operations they
implement.

3.4.3. Processing of Relational Algebra Queries

After a query is parsed. APPROXIMATE creates an approximate class for each node in the query
tree. This class gives a template of all approximate relations of the relation represented by the node. The
value of the class variable OP of an approximate class at a non-leaf node is the relational algebra
operation whose result is the value of the node. In the case of a leaf node, the value of OP is an
approximate read&request The schema of the relation represented by a node in the query tree can be
determined from the schemas of the base relations in the subtree rooted at this node and the relational
algebra operations at and below this node. This schema determines the attributes in the certain class C of
the approximate class. APPROXIMATE makes use of the information on the schemas of all base
relations provided by its view of the database to accomplish this task.

Selecgons of Inidal Approximations and Improvement Propagation

An approximate object is then created for each approximate class. An approximate object is treated
as a temporary object which only exists during the processing of the query. The initial value of an
approximate object of each node in the query tree is determined by APPROXIMATE as follows. The set
of instances of the certain class of every approximate object is initially empty. For the possible classes of
an initial approximation at a leaf node, APPROXIMATE chooses, from a class hierarchy, the subclasses
of the class that corresponds to the base relation represented by the node. The possible classes of a non-
leaf node of the query tree are determined from the possible classes and the extended relational algebra
operations at and below the node.

AFOSR.90.0193 13

For some queries, APPROXIMATE can improve the initial approximations in the query tree.
APPROXIMATE maintains a domain range table of attributes and the domain range values that are used
to categorize the tuples into classes in its class hierarchies and to compute the distances between attribute
values. If an attribute in a select operation on a base relation is an entry in the table, the most specialized
class whose domain range contains the attribute value in the select operation is chosen as the possible
class in the initial approximation of the leaf node. The segment corresponding to that class is retrieved
when the leaf node is evaluated. An example is a query that contains "select the IL runways where length
= 7500". Suppose that runway length is an attribute contained in the domain range table, and in the view
about the RUNWAYS relation, the class "IL short runways" is the most specialized class whose domain
range value of runway length is (0 - 9500). This range contains, and has the smallest distance to, 7500
ft. This class is chosen to be the possible class in the initial approximation of the leaf node. Moreover,
rather than reading the entire relation RUNWAYS, an approximate mad-request to retrieve the objects
that are instances of the class "IL short runways" is issued.

Efficient Implementation

An overwhelmingly large amount of overhead can incur if each of the operations is performed
repeatedly on the same tuples that have been added to the certain set during previous updates and on the
possible classes that remain members of the possible set. To avoid repeated operations on the same
certain tuples, the processing of the certain set(s) is done incrementally. During each update, the
operation at each node is applied only to the certain tuples that have migrated to the certain set of the
operand in the most recent update. The resultant certain set produced by the operation is the union of the
subset of certain tuples obtained in this update with the certain set produced during previous updates.
Only the newest certain tuples are sent upwards in the query tree along with the possible classes.
Specifically, let R, and Ri be the values of the approximate object at a node before and after the latest
update at the node. The certain tuples in C, - Cj and the set P, of possible classes in Ri are sent to the
approximate object at the parent node. At the parent node only the certain tuples in Ci - Cj are
processed. Therefore, the total work done in performing an approximate relational operation on
increments of the certain set(s) until query processing terminates normally is the same as in traditional
query processing. In other words, monotone approximate query processing does not increase the number
of operations performed. The only exceptions am the difference and cartesian-product operations. We
make use of the semantic information provided by the possible classes to make the difference operation
more incremental. Similarly, some additional overhead (beyond the unavoidable amount also incurred in
traditional query processing) can occur when the cartesian product is performed. Although the
approximate cartesian product is applied to the same number of tuples as during the computation of the
traditional cartesian product operation, because only a subset of the certain tuples is available at a time,
we cannot use any optimizing method for the cartesian product which requires access to the complete set

of tuples at a time to speed up this operation.

An additional cost in monotone approximate query processing over and above the cost in traditional
query processing is the time spent to process the possible classes and to generate the possible tuples in the
final answer. To minimize this cost, processing of the possible classes is deferred in APPROXIMATE to
as late as possible. For the set of possible classes of each approximate object, APPROXIMATE
maintains a symbolic expression of extended relational algebra operations and their operand(s); when this

AFOSR-90-0193 14

symbolic expression is evaluated, it produces the values of the possible tuples in the object The
symbolic expressions of all approximate objects are created before any data is retrieved. A symbolic
expression at each node is obtained by appending the operation of the node to the symbolic expression(s)
of its operands(s). The symbolic expression of the root node is evaluated only when the user requests the
evaluation or query processing terminates and an approximate answer is provided.

In summation, the overhead required to provide approximate answers above and beyond the
overhead required in traditional query processing is that of identifying the initial approximation and
including the possible classes in the query computation. In order to identify initial approximations,
APPROXIMATE accesses the domain range table containing information about the attribute values and
classes, as well as class and distance information from the view it maintains. APPROXIMATE makes
one class hierarchy access per base relation or segment to be retrieved. The total number of accesses
required to identify all initial approximations is 0 (k +j) where k is the number of selection operations
in the query and j is the number of segments to be retrieved by the approximate read requests.

Most of the overhead for processing the possible classes is tha of sending the symbolic expression
with each update from a child node to a parent node in the query tree. Contrasted with the size of the set
of certain tuples sent with each update, the size of a symbolic expression is small. It is O (n + m) where
n is the total number of operations and m is the maximum number of possible classes in the symbolic
expression. The overhead required to evaluate a possible class in a symbolic expression is the time to
apply relational algebra operations to the classes. Depending on the relational algebra operation, this
time is either O (1) or O (m) where m is the number of attribute values in the domain range. Hence the
total.time required to evaluate all possible classes is O(m x n).

4. PUBLICATIONS AND SOFTWARE PROTOTYPE

This section lists publications on work supported by this contract and describes the prototype query
processor APPROXIMATE.

4.1. APPROXIMATE

APPROXIMATE is a query processor that produces approximate answers to relational algebra
queries. The approximate answers have non-decreasing accuracy as more data arm retrieved and
processed to produce them. The database is assumed to be complete and the query precise. The
imprecision in an answer occurs because time constraints or failures prevent all the data required to
produce the answer from being reteved and processed. When all the data are retrieved and processed,
the final answer is the exact answer.

The prototype query processor displays the approximate answers as they are produced during
processing. Its interactive interface allows the user to stop the processor when an approximate answer
produced is good enough and to request query processing be continued if the approximate answer
produced thus far is not yet useful. The current version of APPROXIMATE is implemented in Smalltalk,
and we plan to implement an improved version in C++. The query processor can be interfaced to a
relational database system with little or no change required to the underlying relational architecture. Its
relies on an object-oriented view of the database for semantic support. The efficiency of the approximate
query processor was increased by using a lazy evaluation of its operations, and approximate answers are

AFOSR-90-0193 is

produced in a predictable amount of time. This work was partially supported by the U.S. Navy ONR
Contract No. N00014-89-J-1 181 and NASA Contract No. NAG 1-613.

4.2. Journal and Conference Publications

(1) Vrbsky, S. and J. W. S. Liu, "An Object-Oriented Query Processor That Returns Monotonically
Improving Answers," Proceedings of 1991 IEEE International Conference on Data Engineering,
pp. 472-481, Kobe, Japan, April 1991.

(2) X. Song and J. W. S. Liu, "How Well Can Data Temporal Consistency Be Maintained,"
Proceedings of IEEE Symposium on Computer-Aided Control System Design, Napa, California.
March 1992.

(3) Vrbsky, S. and L. W. S. Liu, "Producing Approximate Answers to Database Queries," to appear
in Proceedings of SOAR'92 Coryerence, Houston, TX, August 1992.

(4) Zhao, W.; S. Vrbsky, and J. W. S. Liu "Imprecise Scheduling in Multiprocessor Systems,"
Proceedings of the 5th International Cofeerence on Parallel and Distributed Computing and
Systems, Pittsburgh, PA, September 1992.

(5) Vrbsky, S. and 3. W. S. Liu, "Producing Approximate Answers to Set-Valued and Single-Valued
Queries with APPROXIMATE," Proceedings of CIKM-92 International Conference on
Information and Knowledge Management, pp. 405 4 12, Baltimore, Maryland, November 1992.

(6) Vrbsky, S. and J. W. S. Liu, "Producing Monotonically Improving Approximate Answers to
Database Queries," Proceedings of IEEE Workshop on Imprecise and Approximate Computation,
Phoenix, Arizona, pp. 72-75, December 1992.

(7) Vrbsky, S, "APPROXIMATE, A Query Processor That Produces Monotonically Improving
Approximate Answers," Ph.D. Thesis, Department of Computer Science, University of Ilinois,
January 1993; to appear as a technical report.

(8) Vrbsky, S. and J. W. S. Liu, "An Object-Oriented Query Processor for Returning Monotonically
Improving Partial Answers," to appear in IEEE Transactions on Knowledge and Data
Engineering.

REFERENCES

[1] Liu, J. W. S., S. Natarajan, and K. J. Lin, "Scheduling Real-time, Periodic Jobs Using Imprecise
Results," Proceedings of Eighth Real-Time Systems Symposium, pp. 252-260, San Jose, CA,
December 1987.

[21 Chung, J. Y., J. W. S. Liu, and K. J. Lin, "Scheduling Periodic Jobs That Allow Imprecise
Results," IEEE Transactions on Computer, Vol. 39, No. 9, pp. 1156-1174, September 1990.

[3] Liu, J. W. S., KL J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. 21ao, "Algorithms for
Scheduling Imprecise Computations," IEEE Computer, Special Issue on Real-Time Systems, May
1991.

AFOSR-90-0193 16

[4] Shih, W. K., J. W. S. Liu and J. Y. Chung, "Algorithms for Scheduling Tasks to Minimize Total
Error," SIAM Journal of Computing, July 1991.

[5] K. J. Lin, J. W. S. Liu and K. Kenny, "FLEX* A Language for Programming Flexible Real-Time
Systems," pp. 251-290, in Foundations of Real-Time Computing: Scheduling and Resource
Management, Edited by A. M. Van Tilborg and G. M. Koob, Kluwer Academic Publishers, 1991.

[61 Liu, J. W. S., K. J. Lin, C.L. Liu, and C. W. Gear, "Imprecise Computation," in Mission Critical
Operating Systems, A. K. Agrawala, et al ed., IOS Press, 1992.

[71 Liu, J. W. S., K. J. Lin. W. K. Shih, and J. Y. Chung, "Imprecise Computation: a Means to Provide
Scheduling Flexibility and Enhance Dependability," in Readings on Hard Real-Time Systems,
IEEE Press.

[8] Buneman, P., S. Davidson, and A. Watters, "A Semantics for Complex Objects and Approximate
Queries," Proceedings of the 7th Symposium on the Principles of database Systems, pp. 305-314,
March 1988.

[9] Motro, Amihai, "VAGUE: A User Interface to Relational Databases that Permits Vague Queries,"
ACM Transactions on Office Information Systems, Vol. 6, No. 3, pp. 187-214, July 1988.

AFOSR-90-0193 17

